
rupak ab
2000/12/1
page 1

i

i

i

i

i

i

i

i

Ordering Sparse Matrices

for Cache-Based Systems

Rupak Biswas� Leonid Olikery

The Conjugate Gradient (CG) algorithm is the oldest and best-known Krylov
subspace method used to solve sparse linear systems. Most of the oating-point
operations within each CG iteration is spent performing sparse matrix-vector mul-
tiplication (SPMV). We examine how various ordering and partitioning strategies
a�ect the performance of CG and SPMV when di�erent programming paradigms
are used on current commercial cache-based computers. However, a multithreaded
implementation on the cacheless Cray MTA demonstrates high eÆciency and scal-
ability without any special ordering or partitioning.

Numerical calculations of realistic problems usually require solving a large set
of non-linear partial di�erential equations (PDEs) over a �nite region. Unstruc-
tured meshes are often used to discretize applications involving complex geometries
or those with dynamically moving boundaries. They also facilitate dynamic grid
re�nement and coarsening to eÆciently resolve evolving physical features such as
shocks, vortices, and shear layers. The CG algorithm is perhaps the best-known
iterative technique to solve such sparse linear systems that are symmetric and pos-
itive de�nite. Within each iteration of CG, SPMV is usually the most expensive
operation.

The numerical solution of such complex problems can be extremely time con-
suming, a fact driving the development of increasingly powerful parallel machines.
However, modern computer architectures, based on deep memory hierarchies, show
acceptable performance only if users care about the proper distribution and place-
ment of their data. Single-processor performance on such cache-based systems de-
pends on the exploitation of locality, and parallel performance degrades signi�cantly
if inadequate partitioning of data causes excessive communication and/or data mi-
gration.

In this work, we examine how various ordering and partitioning strategies

�Mail Stop T27A-1, NASA Ames Research Center, Mo�ett Field, CA 94035

(rbiswas@nas.nasa.gov).
yOne Cyclotron Rd, MS:50B-2239, Lawrence BerkeleyNational Laboratory, Berkeley, CA 94720

(loliker@lbl.gov).

1



rupak ab
2000/12/1
page 2

i

i

i

i

i

i

i

i

2

a�ect the performance of CG and SPMV on di�erent cache-based computers. In
particular, we use the reverse Cuthill-McKee (RCM) [1] and the self-avoiding walks
(SAW) [2] ordering strategies, and the METIS [3] partitioner. Parallel implemen-
tations are presented using MPI and shared-memory compiler directives on three
state-of-the-art parallel supercomputers: a Cray T3E, an SGI Origin2000, and an
IBM SP. Results show that ordering signi�cantly a�ects overall performance, that
cache reuse can be more important than reducing communication, and that it is
possible to achieve message passing performance using shared-memory constructs
through careful data ordering and distribution. However, a multithreaded imple-
mentation on the cacheless Cray MTA does not require any special ordering or
partitioning to obtain high eÆciency and scalability.

The Cuthill-McKee enumeration algorithm is based on ideas from graph the-
ory. Starting from a vertex of minimaldegree, levels of increasing distance from that
vertex are �rst constructed. The enumeration is then performed level-by-level with
increasing vertex degree (within each level). RCM is the most popular variation
of this method, where the level construction is restarted from a vertex of minimal
degree in the �nal level.

SAW, on the other hand, is similar to space-�lling curves, but directed towards
unstructured meshes. A SAW over a triangular mesh is an enumeration of the
triangles such that two consecutive triangles in the SAW share an edge or a vertex.
SAWs are amenable to hierarchical coarsening and re�nement, i.e. they have to be
rebuilt only in regions where mesh adaptation occurs, and can therefore be easily
parallelized. Unlike RCM, SAW does not speci�cally enumerate vertices. This
implies a higher construction cost for SAWs, but has the advantage that several
di�erent vertex enumerations can be derived from a given SAW.

METIS, which uses a multilevel algorithm, is currently the most popular graph
partitioning library. It reduces the size of the graph by collapsing vertices and edges
using a heavy edge matching scheme, applies a greedy graph growing algorithm to
partition the coarsest graph, and then uncoarsens it back to the original by using a
combination of boundary greedy and Kernighan-Lin re�nement. It is important to
note that partitioners strive to balance the computational workload among proces-
sors while reducing interprocessor communication; improving cache performance is
not a typical objective.

An explicit message-passing implementation using MPI and the Aztec library
was tested on the T3E at NERSC. Results on a 661; 0542 matrix with 25,753,034
nonzeros for key kernel routines show that SAW is always about two times faster
than RCM and METIS. However, all three strategies demonstrate good scalabil-
ity (more than 75% eÆciency) up to the 64 processors that were used for these
experiments. Investigations reveal that servicing the cache misses is extremely ex-
pensive and typically requires more than 90% of the total execution time. SAW has
the fewest cache misses while METIS minimizes the average communication vol-
ume, indicating that improving cache reuse may be more important than reducing
interprocessor communication for sparse matrix computations.

A shared-memory version using SGI's native pragma directives was imple-
mented on the Origin2000 at NASA Ames. Particular attention was paid to the
distributed-memory nature of the machine by performing an appropriate initial



rupak ab
2000/12/1
page 3

i

i

i

i

i

i

i

i

3

data distribution. Little performance di�erence between RCM and SAW is ob-
served since both ordering strategies reduce the number of secondary cache misses
and the non-local memory references of the processors. A comparison with the MPI
version running on the Origin2000 revealed similar runtimes, even though the pro-
gramming methodologies are signi�cantly di�erent. This shows that it is possible
to achieve message-passing performance using shared-memory constructs, through
careful data ordering and distribution.

The MTA has a radically di�erent architecture, and uses multithreading in-
stead of data caches to hide memory latency. Compared to standard cache-based
systems, programmability is signi�cantly enhanced as the user need not control data
placement. Performance primarily depends on having a large number of concurrent
computation threads. The multithreaded implementation of CG only requires a
few compiler directives. Results using 60 threads per processor show that CG and
SPMV achieve excellent scalability (more than 90% eÆciency) without any order-
ing. This indicates that there is enough thread and instruction level parallelism in
CG to tolerate the relatively high overhead of memory access.

Realistic scienti�c applications require preconditioning algorithms, such as
ILU, in order for CG to reach convergence. We report on the e�ects of precondi-
tioning for various ordering strategies and architectural platforms. We also examine
the e�ects of �rst partitioning the sparse matrix using METIS, and then performing
RCM or SAW orderings on each subdomain. Finally, results from a hybrid (MPI
and OpenMP) version of the code running on the new IBM RS/6000 SP machine
at SDSC are presented.

[1] E. Cuthill and J. McKee, \Reducing the bandwidth of sparse symmetric matri-
ces," Proc. ACM National Conference, 1969, 157{192.

[2] G. Heber, R. Biswas and G.R. Gao, \Self-avoiding walks over adaptive unstruc-
tured grids," Concurrency: Practice and Experience, 12 (2000) 85{109.

[3] G. Karypis and V. Kumar, \A fast and high quality multilevel scheme for par-
titioning irregular graphs," SIAM J. Scienti�c and Statistical Computing 20
(1998) 359{392.


